CRITIQUE OF OFFSHORE WIND ENERGY POLICIES OF THE DENMARK AND NETHERLANDS—WHAT ARE THE LESSONS FOR INDIA

Tarun Dhingra Sr. Associate Professor & Assistant Dean (Research)

CoMES, UPES, Dehardun, India

NAMASTE FROM INDIA

- First of all I thanks the organisers of the conference especially Prof. Nien-Tsu Alfred Hu, Ph.D. -Director, Graduate Institute of Marine Affairs Director, The Center for Marine Policy Studies, National Sun Yatsen University, Kaohsiung, TAIWAN.
- I thank good office of Prof. Nien-Tsu Alfred Hu for giving me this opportunity to travel all the way from Dehradun (India) to such a beautiful land in far east named Taiwan.
- For Indians Taiwan is a country which made rapid stride in economic and human development and we strive to learn from you all.

INDIA – ENERGY NEEDS

- @ 8% growth Generation Capacity needed – 962,000 MW in the next 20 years
- > Additional 800,000 MW or
 ~ 750 MW/week from today for the next 20 years.

Year	H	Billion kWh	Installed Capacity (GW)		
	8%	9%	8%	9%	
2006-07	700	700	140	140	
2011-12	1029	1077	206	215	
2016-17	1511	1657	303	331	
2021-22	2221	2550	445	510	
2026-27	3263	3923	655	785	
2031-32	4793	6036	962	1207	

Energy needed @ 8% & 9% GDP growth

EFFECT OF FOSSIL FUELS ON ENVIRONMENT

GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY BY ASSET CLASS, 2004-2015, \$BN

• Source- UNEP, Bloomberg, 2016

RENEWABLE ENERGY ACHIEVEMENTS & POTENTIAL -INDIA

	Achie	eved	In Process Anticipated		Targets	Estimated Potential
Five –Year Plan	Cumulative Installed Capacity by the end of 9 th Plan	10 th Plan – additions during the plan period	Anticipated in the 11 th plan (additions during the plan)	By the end of the 11 th plan (Cumulative installed capacity)	By the end of the 13 th plan (cumulative installed capacity)	Medium Term
Years	Through 2002	2002-2007	2007-12	Through 2012	Through 2022	10 Years
Wind	1667	5415	10,500	17,582	40,000	102,000
Small Hydro	1438	520	1400	3358	6500	15,000
Biomass	368	750	2100	3218	7500	23,700
Solar	2	1	1000	1003	20,000	20-30 MW/Sq. Km
Total	3,475	6,686	15,000	25,161	74,000	~ 150,000

Source: MNRE

COUNTRY SPECIFIC POTENTIAL OF ONSHORE AND OFFSHORE WIND ENERGY

Country	Onshore (GW)	Offshore (GW)	Onshore (TWh)	Offshore (TWh)
Russia	54,794	10,502	120,000	23,000
Canada	35,616	9,589	78,000	21,000
US	33,789	6,392	74,000	14,000
China	17,808	2,100	39,000	4,600
UK	2,009	2,831	4,400	6,200
Germany	1,461	429	3,200	940
India	1,324	502	2,900	1,100
Japan	260	1,232	570	2,700
S.Korea	59	452	130	990
Italy	114	73	250	160

Source: Xi Lu et al., and Lawrence Berkeley National Laboratory, US

CHALLENGES WITH ONSHORE WIND ENERGY

- Lack of availability of contiguous parcels of land
- Unpredictable nature of wind sources on land
- Potential land litigations
- 'Food vs. fuel' debates if arable land is taken over for onshore wind farms
- Issues of visual impact and noise
- Most of the potential sites already taken (Repowering ?)

- World has witnessed various policies to promote wind power. Here an attempt has been made to summarise various policy mix which helps in creating a clear picture of policies landscape. This set actually helps other countries who are not high on promoting wind power to help world move from fossils fuels to renewables.
- Typical Policy measures to promote wind energy *Vries*, 2003

S.No	Themes	Select Author(s)	Context	Inferences
1	Offshore wind	EWEA (2012), REN 21, (2012),	Europe	Offshore wind energy has reached
	energy status in	Moller (2011).		almost 4000 MW of installed capacity
	Europe			today with close to 6000 MW likely to
				be commissioned by end of 2012 with
				UK being the leader followed by
				Denmark, Netherlands and Germany.
2	Policies adopted	(Green & Vasilakos, 2011),	Europe	Talks about how having a consistent
	by countries in	(Esteban et al., 2011), Lewis &		and cogent policy have helped grow the
	Europe for the	Wiser (2007), Luthi & Prasseler		offshore wind energy sector in Europe.
	offshore Wind	(2011), Dinica (2006), Huber		
	energy sector	(2004), Held (2006), Ragwitz		
		(2006), Mitchell (2006), Toke		
		(2011), Sperling (2010), Prassler		
		& Schaechtele (2012), Buen, 2007;		
		kaldellis (2011).		

3	Possible	Krohn et al.,(2009), Swider et	Europe	High electricity costs, grid connectivity,
	Challenges to	al., (2008), (Green &		foundation costs, environmental
	growth of offshore	Vasilakos, 2011), (EEA, 2009),		clearances, multiple agencies to obtain
	wind sector	(Blanco,2009), (Markard &		clearances, water depth, distance to the
		Petersen, 2009)		coast, O&M costs are all some of the
				challenges faced in offshore wind
				energy sector .
4	Factors that aided	Prassler & Schaechtele (2012),		How permit procedures, grid connectivity,
	the growth of	(Bergek & Jacobsson, 2003),		public support and environmental clearances
	offshore	Foxon et al. (2005), (Wolsink,		are critical factors in growth of offshore. Also
		2000), (Warren et al., 2005),		different policies need to be adopted for
		Aitken (2010), (Warren et al.,		different stages in the evolution of offshore
		2005), (Krohn, 2009)		wind sector.

5	Stability of policies for	(Boyle,	Europe	Adoption of a specific target
	long term helped	2007)		and keeping it for long term
	growth of wind energy			

Review suggests that authors have agreement in the following areas like offshore wind energy has seen massive installation in these four countries UK being the leader followed by Denmark, Netherlands and Germany, consistent and cogent policy have helped it to grow.

Following superset of variables, as shown in next slide, was found from the literature survey that formed the building blocks of offshore wind energy policy roadmap adopted by countries around the world most importantly the UK, Germany, Denmark and the Netherlands..

BUILDING BLOCKS OF POLICY MIX-ALL VARIABLES

SNo.	Components/Building Blocks/Variables
1	Feed in Tariffs (FiT)
2	Accelerated Depreciation
3	Generation based Incentives (GBI)
4	Legally enforceable RPO/REC
5	Faster approvals/Single Window Clearance
6	Continuity of policies for long term (more than 10 years)
7	Adequate evacuation infrastructure to transmit power from high seas
8	Tariff determination on wind speeds and not on Zones
9	Financial incentives like zero import duty, excise duty waiver
10	Availability of expert EPC contractors
11	Availability of local manufacturing expertise for Wind Turbine
12	Growth of ancillary units (eg Gear box)
13	Superior program execution skills of the developer
14	Accurate data on offshore wind potential sites and wind speeds
15	Skills development and training of human resources
16	Active Research institutions working on offshore wind energy
17	R&D facilities to localize production of expensive equipments
18	'Priority sector' tag to offshore wind energy sector
19	Availability of capital at attractive rates of interest
20	Creation of offshore wind energy fund to reduce cost of capital
21	Moratorium on interest payments for the first 5 years of project go-live

BUILDING BLOCKS OF POLICY MIX-ALL VARIABLES

- No one country has adopted all the factors but have picked a smaller set that probably suited their local conditions.
- **Discussions** The review of the offshore wind energy policies adopted by the Denmark and Netherland are discussed.
- Denmark published its first renewable energy policy following the oil crisis which focused on creating entrepreneurs at the ground level and formation of cooperatives to boost the growth of renewable energy (DEA, 2007).
- Feed-in tariffs, agreements with the utilities to support decentralised power generation in 1979, has since accelerated the growth of wind energy in the country. Denmark announced its offshore wind energy policy in 1996 and had a target of 4000 MW of generation from offshore wind by 2030 (DEA, 2007).

2/21/2017 (\mathfrak{D}) Dr. Tarun Dhingra, UPES

REVIEW OF THE OFFSHORE WIND ENERGY POLICIES OF DENMARK

- Denmark has been a pioneer of exploiting wind energy for more than 2 decades which has resulted in one of the highest wind power penetration levels in the world, close to 25-30 %.
- **Consent Procedures-** Danish Energy Authority (DEA) acts as the single window agency for consentsites—tender—award—negotiation—permit assessment-- complete application with the EIA— License
- <u>Figure 1.2</u> <u>Flowchart of the consent procedure in</u> <u>Denmark</u>
- **Grid Connectivity-** TSO– If through a tender-guaranteed financial compensation if the TSO is unable – If open door route then the responsibility lies with developer.

REVIEW OF THE OFFSHORE WIND ENERGY POLICIES OF DENMARK

- **Financial Incentives-** turbines connected to the grid premium and incentives— income tax rebate for Cooperative owned wind turbines to diversify ownership.
- Offshore wind farm projects happened with tendering and negotiated tariff way.
- Impact of these policy initiatives- Single Window Clearance(state)-Tendering policy- Environment assessment-- Grid Connectivity(state)
- only downside is not adopting tradable green certificates mechanism to give the project developers a premium on the power generated and instead adopting the steady, albeit lower revenue generating mechanism of feed-in – tariffs.
- Summary- Nevertheless, Denmark has one of the most progressive policy initiatives to encourage the growth of offshore wind energy sector in their country.

REVIEW OF THE OFFSHORE WIND ENERGY POLICIES OF NETHERLAND

- Netherlands has had definite R&D programs and policies to support innovation in wind turbine manufacturing, since 1976, which led to the growth of production of wind turbines in the country.
- Investment subsidies granted in 1988– changes to generation based incentive -- mandated grid access to wind energy farms-- target of 14% of electricity from renewable by 2020-- 6000 MW each from offshore and onshore
- **Consent Procedures-** Public works and water management act (WBR)-- key legislation -- An Environmental impact assessment must be submitted along with the application—
- Figure 1.3 Flowchart of the consent procedure for offshore wind parks in Netherlands

REVIEW OF THE OFFSHORE WIND ENERGY POLICIES OF NETHERLAND

- Grid Connectivity- TenneT is the onshore grid owner and regulator. The developer pay for cabling and offshore grid infrastructure-- wind farm developers have to make an application to build the offshore grid to Tenne T -- Netherlands has a highly evolved grid infrastructure in place -- several plans by TenneT to have inter-country grids in place with other EU countries like Germany, Norway and Denmark (DTI, 2011)
- **Financial Incentives-** Initially subsidy on KW capacity -- lead to over-dimensioning of projects to get higher incentives-- changed to generation based incentive— Approved projects participated in tender process for subsidy offered for fifteen years subject to several conditions--

REVIEW OF THE OFFSHORE WIND ENERGY POLICIES OF NETHERLAND

- The subsidy helps to bridge the gap between the electricity floor price and the tariff value.
- If the existing rate is below the floor price, the developer gets a sum of floor price and subsidy which may be less than the tariff value. If the existing rates is more than the tariff value, then the developer get the existing rates but no subsidy.
- feed-in tariff bonus by distance from shore to the offshore wind park-- maximum subsidy for 3180 hours of production (80%)-- project should begin within 5 years of subsidy-- innovation grants
- Impact of these policies initiatives– EIA (developer) -- grid connection expenses (developer) – More clarity for long term

REVIEW OF THE OFFSHORE WIND ENERGY POLICIES OF

• Summary- evacuation infrastructure and environmental clearances by developer. Additional tariff, liberal time frame and easy depreciation norms new positives.

NETHERLAND

- <u>Comparison of Offshore Wind Energy policies</u> adopted by select European countries (Denmark, <u>Netherlands</u>)
- <u>Perceptual map of attractiveness for offshore wind</u> sector

PERCEPTUAL MAP OF ATTRACTIVENESS FOR OFFSHORE WIND SECTOR IN DENMARK AND NETHERLAND

21

RECOMMENDATIONS FOR INDIA

OFFSHORE WIND ENERGY POLICY RECOMMENDATIONS FOR INDIA (1/2)

Facility	Description
'Single Window Clearance' procedure	UK has a 'one stop shop' procedure to ease the procedural difficulties for project developers. Denmark, Germany also have a one-stop procedure.
Transparency in financial burden for project developer	The fee, lease, administrative charges etc. need to known to developers in advance so that there are no surprises while executing the project
Securing pioneering risks	Both fixed feed-in tariffs and renewable energy certificates, implemented in a secured environment, have been shown to attract the required investments when combined with legally enforceable purchase contracts for typically 15 to 20 years. India needs to adopt these inducements to motivate developers to look at offshore wind energy
Risk hedging schemes	Offshore wind energy projects, at least during the initial stages, are risky in India as these are new technologies. Developers will face challenges to get Insurance cover on their own, especially from private insurance agencies. For the first 'wave' of developments, the public sector insurance companies (with overt support from the Government) could play an important role
Anti-speculation clauses	Imposing deadlines – accompanied with penalties or loss of the concession – for follow-up action, for instance by requiring that the developer start building activities within a limited period of time after the required permissions have been granted. This will ensure that there are no 'squatters' on potential wind farms sites as seen even in onshore wind energy

OFFSHORE WIND ENERGY POLICY RECOMMENDATIONS FOR INDIA (2/2)

Facility	Description
Sprinter bonus for project completion	Bonus for early completion and commissioning of offshore wind farms needs to be included to incentivize developers to accelerate completion of projects. Currently, in EU, there's a penalty for delay in completion but no bonus for completing work ahead of schedule. Since 'Risk' and 'Reward' go together, policy makers need to announce sprinter bonus for developers
Automatic Environmental clearances before inviting bids	Environmental clearances significantly delay many infrastructure projects in the country. Hence the Government need to accord environmental clearances to the proposed project sites even before inviting bids from interested developers
Accurate data to predict the offshore wind energy potential	Currently, accurate data on offshore wind energy potential in the country is unavailable. Wind energy potential in a site is an important parameter for obtaining funding from financial institutions for a project developer. Hence efforts should be made to obtain accurate data
Building evacuation infrastructure by Government	Important, and probably as expensive, in an offshore wind energy project is to develop evacuation infrastructure from the seas to the grid onshore. As this will be prohibitive for any developer, Government could consider building the evacuation infrastructure to encourage growth of offshore wind energy sector
Legally enforceable payment mechanism	Poor financial health of most of the State Electricity boards (SEBs) delays in realizing payment (that run into several million US dollars) will adversely affect the working capital and cash flows of project developers forcing them to take additional loans at high interest to keep the business going. Hence, legally enforceable payment mechanism needs to be put in place to give confidence to investors and project developers

SUPPORT OF POLICIES IN THE GROWTH OF ONSHORE WIND ENERGY SECTOR IN INDIA

- Electricity Act 2003 was a watershed policy
- The act also mandated RPO, growth in renewable,
- Subsequent policies that followed the Electricity act 2003 like the National Electricity policy (encouraging private sector competition), National Tariff policy (preferential tariff for wind energy), Accelerated depreciation, tax subsidies, duty waivers, generation based incentives etc. apart from state specific policies.
- Dedicated cabinet level nodal ministry (MNRE)

CONCLUDING REMARKS

- Europe is a pioneer and the world leader in offshore wind energy sector as of today. Each of the countries reviewed have their own policies to support this sector and they vary considerably from country to country.
- Tender based system is being pursued by Denmark & Netherland.
- Apart from the financial support, several other factors like grid connectivity, continuity of policies for the long term, award criteria, visibility into future project pipeline and host of other factors come together to make a country attractive for offshore wind farm .
- There is a direct relationship between supportive policies and growth of renewable in India. Supportive policies for offshore wind energy will give the necessary impetus to promote the sector in India.

DISCUSSION POINTS BY MY OWN RESEARCH

- Building blocks of offshore wind policy
- 5 levers that emerge Factor analysis
- 3 High impact levers Logistic regression
- Conclusion and recommendation

RESEARCH METHODOLOGY FLOWCHART

POLICY

SNo.	Components/Building Blocks/
1	Feed in Tariffs (FiT)
2	Accelerated Depreciation
3	Generation based Incentives (GBI)
4	Legally enforceable RPO/REC
5	Faster approvals/Single Window Clearance
6	Continuity of policies for long term (more than 10 years)
7	Adequate evacuation infrastructure to transmit power from high seas
8	Tariff determination on wind speeds and not on Zones
9	Financial incentives like zero import duty, excise duty waiver
10	Availability of expert EPC contractors
11	Availability of local manufacturing expertise for Wind Turbine
12	Growth of ancillary units (eg Gear box)
13	Superior program execution skills of the developer
14	Accurate data on offshore wind potential sites and wind speeds
15	Skills development and training of human resources
16	Active Research institutions working on offshore wind energy
17	R&D facilities to localize production of expensive equipments
18	'Priority sector' tag to offshore wind energy sector
19	Availability of capital at attractive rates of interest
20	Creation of offshore wind energy fund to reduce cost of capital
21	Moratorium on interest payments for the first 5 years of project go-live

TECHNIQUE _____

FACTOR ANALYSIS

	KMO and Bartlett's Test	
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.726
Bartlett's Test of Sphericity	Approx. Chi-Square	3197.603
	df	210
	Sig.	.000

Eigenvalue

Result:

Grid_connec

Moratorium_

payment

ovocution

ratés

Faster_Appr Policy_for_lo Tariff_based speeds

Financial_In Priority_sect Capital_at_a Bartlett's Test – Verifies the null hypothesis that the variables are independent of each other – rejects

Offshore_wir Access_to_c Superior_prc 4 All variables load cleanly on one factor.

3.850

3.220

2.515

2.185

1.957

1.805

1.337

1.285

.992

.747

.690

.472

.451

.270

.086

81.987

85.207

87.722

89.907

91.864

93.669

95.006

96.291

97.284

98.031

98.721

99.192

99.644

99.914

100.000

.809

.676

.528

.459

.411

.379

.281

.270

.208

.157

.145

.099

.095

.057

018

8

9

10

11

12

13

14

15

16

17

18

19

20

21

execution						
Expert_EPC_Contractors			.836			
Growth_of_ancillary_unit			.770			
Local_manufacturing			.741			
AD				.803		
GBI				.797		
FIT				.668		
RPO				.580		
Skill_development					.864	
Accurate_offshore_wind_ speeds					.827	
RD_Ecosystem					.745	
Extraction Method: Princi	pal Compon	ent Analysis.				

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Extraction Method: Principal Component Analysis.

0 21

Scree Plot

BUILDING BLOCKS – OFFSHORE WIND POLICY (1/3)

Building Blocks – Offshore Wind Policy (2/3)

• Government Support

- Faster approvals and Single window clearance mechanisms
- Sustainability of policies environment for a longer term (10 years or more)
- Constructing evacuation Infrastructure and facilities for storage of electricity grid
- Zero duty on imports, excise duty waiver and tax benefits for offshore wind ener

a. Rotation converged in 6 iterations.

• Availability of capital for Investments

- Availability of capital at attractive rates of interest similar to what is extended to priority sector projects
- Moratorium on interest payments for the first few years of project go-live.
- Offshore wind energy fund from cess levied on carbon emissions or a Government backed guarantee to reduce the cost of capital
- Financial Institutions willing to lend to offshore wind projects as priority sector

LOGISTIC REGRESSION (1/2)

Case Processing Summary

Variables not in the Equation

	_	ы	Davaant	1				0	16	01.0
<u>Unweighted Case</u> Belected Cases	!S [■] Included in Analveie	N 101	Percent 400.0		Stop 0	Variablee	FAC1 1	90018 99,000		<u> </u>
Jelecteu Cases	Miccing Cococ	181	100.0			vallabico	FAC2 1	33.030		.000
	Totol	U 404	.U				FAC2_1	.313	1	.576
Incl	TULAT	181	100.0				FAC3_1	.311	1	.539
	14.									100
	10 5									100
a.										00
Block	0 presents the	rosult	s with	only the co	nstan	t inclue	led hefore a	ny coef	ficients	
DIOCK	t and distants the		5 WIUII	omy the co	instan	t merut				,
oc are en	tered into the	equati	on							
Indep	Independent Variables - Factors 1, 4 and 5 - improves the model significantly									
Block	1 Mothod - Fr	ator Th	is pro	sonts the re	oulto	whon t	ho prodictor	na		
DIUCK	i methou – Ei		ns pres		suits	when u	ne predicto			
						_				
Chi-sq	uare 167.903 ((> -2LL)	of 37.2	93) and Sig	; <.05 ∶	=> that	the predict	ors do h	ave a	
^{signifi}	⁰ significant effect and create essentially a different model.									
U				v						
Negell	-onleo's D9 of	201 : J	insting			nahin o	f 00 10/ hat	waan the		
a.c Nagen	$\operatorname{kerkes} \mathbf{K}^{\mathbf{Z}} \mathbf{O}^{\mathbf{I}}.$	691 ING	Icating	g a strong r	elatio	nsnip o	1 89.1% betv	veentne	•	
b.T predic	tors and the p	predict	ion							
H-L (.9	05) => model	SILØØASI	ted is a	good fittir	ng moo	del				
		5 ~88 00		good moon	-9					
p 0 Constant	1.077 .171	39.769	1	.000	2.935	a, Estima	tion terminated at itera	tion number 8	because par	ameter esti
						changed	by less than .001.		and a second second	

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	3.426	8	.905

LOGISTIC REGRESSION (2/2)

Classification Table^a

		Predicted			
		Gro	wth		
	Observed	0	1	Percentage Correct	
Step 1	Growth 0	42	4	91.3	
	1	3	132	97.8	
	Overall Percentage			96.1	

Overall 96.1% were correctly classified. This is a considerable improvement on the 74.6% correct classification with the constant model so we know that the model with predictors is a significantly better mode

Logistic Regression equation that gives the growth of offshore wind energy in India will be

Log (p/1-p) = 3.695 + 3.168 x F1 + 0.573 x F2 + 0.340 x F3 + 3.337 x F4 + 2.510 * F5

Government Support, Fiscal & Quota based incentives and enabling institutional ecosystem have high impact on the growth of offshore wind energy in India

1-

SNo.	Components/Building Blocks/Variables	
1	Feed in Tariffs (FiT)	
2	Accelerated Depreciation	Fiscal & Quota
3	Generation based Incentives (GBI)	based
4	Legally enforceable RPO/REC	incentives
5	Faster approvals/Single Window Clearance	
6	Continuity of policies for long term (more than 10 years)	
7	Adequate evacuation infrastructure to transmit power from high seas	
8	Tariff determination on wind speeds and not on Zones	Government
9	Financial incentives like zero import duty, excise duty waiver	Support
10	Availability of expert EPC contractors	
11	Availability of local manufacturing expertise for Wind Turbine	
12	Growth of ancillary units (eg Gear box)	
13	Superior program execution skills of the developer	
14	Accurate data on offshore wind potential sites and wind speeds	enabling
15	Skills development and training of human resources	institutional
16	Active Research institutions working on offshore wind energy	ecosystem
17	R&D facilities to localize production of expensive equipments	
18	'Priority sector' tag to offshore wind energy sector	
19	Availability of capital at attractive rates of interest	
20	Creation of offshore wind energy fund to reduce cost of capital	
21	Moratorium on interest payments for the first 5 years of project go-live	

BEST OF BREED OFFSHORE WIND POLICY FROM EUROPE

Key Factor	UK	Germany	Denmark	Netherland
Government plans for expansion of offshore wind energy	Ambitious and very specific plans for new capacity launched through successive tender rounds	Strategic, long-term ambition for offshore wind capacity. (10 GW by 2020 and 25 GW by '30)	Specific but modest target or plans for expansion	Initially ambitious plans but several postponements and delays
Tender model	Multisite tender rounds State appoints zones- investor finds and proposes sites within these zones	Open-door procedure Investor finds and proposes sites	Single site auction State defines site Limited dialogue with tenderers	Multisite / open selection auction Investor finds and proposes sites
Award Criteria	Call for tender after negotiation Based on developer's project proposal and capacity	First come, first served Permission to be achieved for site in advance	Lowest offered tariff	Lowest offered tariff. Prequalification done and who pass the stage are called for negotiation
Time frames for use/ establishment	Fixed but enough headroom	Flexible and spacious	Fixed and tight (establishment to be completed 2-3years from awarding)	Fixed, but moderate (construction to be initiated before 3 years from award)
EIA	Performed in continuation of tender round. Financing is split between state and investor	Performed along with application Financed by investor	Performed before call for tenders Financed by state	Performed before auction Financed by investor

Key Factor	UK	Germany	Denmark	Netherland
Subsidy settlement for sale of electricity	Renewable obligation certificates(ROC) on top of the price of electricity(until 2037) Extra credits for offshore wind	Fixed, uniform tariff (at least12 years ahead). Additional tariff for OWF till 2016 Extension of subsidy period on great distance to shore and depth	Fixed tariff price defined by winning tender(10-15 years ahead)	Fixed tariff defined by winning tender(15 years ahead) Addition for distance to shore Ceiling to total subsidized production
Supplemental incentives (penalty, sprinter bonus, etc.)	Exemption of electricity buyers of Climate Change Levy Lease payment for sites	Sprinter tariff over and above additional tariff for OWF (declining on taking into operation after2015)	Keep-open penalty Delay penalties	Easy depreciation rules for investments Keep-open penalty. Bank Guarantee to be revoked incase of delays Innovation bonus
Grid connection	Investor is in charge of and negotiates the cost of grid connection with network operator	Grid connection costs borne by the TSO – based on developer meeting conditions	Free connection; state performs, finances and guarantees	Investor bears expenses of grid connection. Plans to get the TSOs bear the cost.
Regulatory procedures and planning	Individual permission procedures ,multiple approvals needed. (Almost single window)	Approval by regional state agencies, some by Federal (Almost single window)	Streamlined one-stop shop	Not one-stop shop

ERSITY OF PETROLEUM AND ENERGY STUDIES:

ersity of Petroleum and Energy Studies (UPES) is the ace energy specific ersity in the Pan-Asian region that offers a wide range of unique and highly alised, domain specific programs at the graduate and post-graduate level. university, today, has moved beyond energy & petroleum and has sitioned itself as the Nation-builders' university.

UT CoMES :

ge of Management & Economics Studies (CoMES), a constituent college of combines all the facets of management and economics to provide uate and post-graduate programs that are focused on the vital domains of & Gas, Power, Infrastructure, Aviation, Automobiles, Port & Shipping, mation Systems, Logistics & Chain Supply Management and International ness

UT THE CONFERENCE:

dynamic business environment has changed the economic growth scape globally. This, in turn, is creating huge demand for private and public or infrastructure developments such as power stations, electricity grids, all energy requirements, water supply and treatment plants, roads, ays, airports, bridges, telecommunication networks, schools, hospitals, time developments etc. Keeping in view of these developments, ICMI proposes external & internal business environment influencing structure (hard and soft) as conference theme for current year. It seeks to deliberations on contemporary issues related to business environment infrastructure across the globe. The conference will benefit policy makers, emicians, researchers, entrepreneurs and students. This ICMI is the Fifth e & a glimpse of earlier ICMI can be accessed at <u>icmi.webs.com</u>

FOR PAPERS

2017 invites empirical research papers & articles, conceptual & review rs, view point and case studies related to Business Environment pertaining ergy, Infrastructure, Transportation and allied sectors covering the core functional areas of economic entities. The details of the themes and sub

MAJOR THEMES & SUB THEMES

Internal Business Environment

External Business Environment

- Management of people, capita demand, etc.
- Management of assets and fac chain, etc.
- Management of technical capa operations, etc.
- Micro Suppliers, Customers, Intermediaries, Competitors, 6
- Macro Political, Social, Tecno Economic and Regulatory fran business environment, etc.
- Oil & Gas, Power, Transportati air, & water, Communication S Renewable, Rural & Urban dev Environmental Impact etc.
- Education, Health, Tourism, He Banking and Finance, Busiens: Information Systems, etc.

The second second second

Infrastructure - Soft

Infrastructure

Guidelines for submission:

Authors are requested to submit their manuscripts at cmt3.research.Microsoft.com/icmi2017/

For details please visit www.icmi.webs.com

Publication and Copyright:

All accepted manuscripts would be published in the form of e-bool Proceedings of ICMI-2016 with ISBN No. 978-194343889-1 is availa

the second state and second state

ine	Date	Registration & Fee Details			
	November 30, 2016	Corporate Authors	₹ 5000		
of e	December 15, 2016	Academicians, Research Scholars, & Alumni	₹ 3000		
m	January 10, 2017	Students	₹ 1000		
e Date	February 9-10, 2017	Foreign Authors	\$ 150 (US)		

In the state of th

Fee can also be paid through Demand Draft favoring "University of Petroleum and Energy Studies", Dehradun.

Dr. Tarun Dhingra, Convener E-mail: tdhingra@ddn.upes.ac.in |_+91 9837321447

nvener: University of Petroleum and Energy Studies (UPES), Knowledge Acres, P.O. Kandoli (Upper), Via. Prem Nagar, Dehradun – 248007. +91 135 2102647/2102760 | Web sites: <u>www.icmi.webs.com</u>, <u>www.upes.ac.in</u> Kindly Visit our Facebook Page: https://www.facebook.com/UPESICMI

Organising Committee

Dr. Anshuman Gupta Professor Dept. of Economics & IB	
nkar Chakrabarti Head Decision Science	
iil Kulshrestha stant Dean CoMES	
hika Pasricha Head ssional Communication	
Bangar Raju Head portation Management	
- 2017	

Co-Convener Team firanmoy Roy Dr. T. Joji Rao Dr. Sumeet Gupta v@ddn.upes.ac.in jojirao@ddn.upes.ac.in sumeetgupta@ddn.upes.ac.in C. Bahuguna Prof. Avishek Ghosal Dr. M. Yaqoot a@ddn.upes.ac.in aghosal@ddn.upes.ac.in myaqoot@ddn.upes.ac.in akshamana Rao Dr. Geo Jos Fernandez Dr. N. Dalei

ICMI - 2017

5[®] International Conference on Management of Infrastructure (ICMI 09 -10 February, 2017

College of Management and Economics Studies (CoMES

for listening Feel free to raise

query

Thanks

42